
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Silica Wort Supplementation as an Alternative for Yeast Stress Relief on Corn Ethanol Production with Cell Recycling

In very high gravity (VHG) fermentation, yeast cells are subjected to a multitude of challenging conditions, including the osmotic pressure exerted by the high sugar content of the wort and the stress factors associated with the high ethanol concentrations present at the end of the fermentation cycle. The response of this biological system to abiotic stresses may be enhanced through biochemical and physiological routes. Silica may play a significant role in regulating the cellular homeostasis of yeast. Alternatively, it is expected that this outcome may be achieved through biochemical responses from the effects of vitamins on yeast cells and the physiological yeast route changing by the culture medium aeration. The objective of this study was to investigate the effects of adding 500 mg L−1 of silica on corn ethanol wort medium and the possibility of supplementing the same wort with vitamins alongside aeration (0.2 v v−1 min−1) as an alternative resource to sustain the fermentation yield rather than adding silica in a fed-batch fermentation cycle with yeast recycling. Upon completion of the five fermentation cycles, yeast samples subjected to the treatment with the addition of silica exhibited a 3.1% higher fermentation yield in comparison to the results observed in the vitamins plus aeration medium bath. Even though greater biomass production (19.1 g L−1) was observed through aerobic yeast behavior in vitaminized supplemented corn medium, the provided silica had a more beneficial effect on yeast stress relief for very high gravity fermentation in a corn hydrolyzed wort with cell recycling.
- University of Copenhagen Denmark
- University of Copenhagen Denmark
- Universidade de São Paulo Brazil
abiotic stress, yeast response, QH301-705.5, Saccharomyces cerevisiae, corn ethanol, <i>Saccharomyces cerevisiae</i>, nutrition, silica, biofuel, Biology (General), yeast recycling, fermentation, aeration
abiotic stress, yeast response, QH301-705.5, Saccharomyces cerevisiae, corn ethanol, <i>Saccharomyces cerevisiae</i>, nutrition, silica, biofuel, Biology (General), yeast recycling, fermentation, aeration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
