
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ontology Design for Solving Computationally-Intensive Problems on Heterogeneous Architectures

doi: 10.3390/su10020441
Viewing a computationally-intensive problem as a self-contained challenge with its own hardware, software and scheduling strategies is an approach that should be investigated. We might suggest assigning heterogeneous hardware architectures to solve a problem, while parallel computing paradigms may play an important role in writing efficient code to solve the problem; moreover, the scheduling strategies may be examined as a possible solution. Depending on the problem complexity, finding the best possible solution using an integrated infrastructure of hardware, software and scheduling strategy can be a complex job. Developing and using ontologies and reasoning techniques play a significant role in reducing the complexity of identifying the components of such integrated infrastructures. Undertaking reasoning and inferencing regarding the domain concepts can help to find the best possible solution through a combination of hardware, software and scheduling strategies. In this paper, we present an ontology and show how we can use it to solve computationally-intensive problems from various domains. As a potential use for the idea, we present examples from the bioinformatics domain. Validation by using problems from the Elastic Optical Network domain has demonstrated the flexibility of the suggested ontology and its suitability for use with any other computationally-intensive problem domain.
- King Abdulaziz University Saudi Arabia
- Friedrich Schiller University Jena Germany
- Ain Shams University Egypt
- King Abdulaziz University Saudi Arabia
- Ain Shams University Egypt
heterogeneous architectures, Big Data, Environmental effects of industries and plants, ontology design, TJ807-830, ontology design; knowledge management; heterogeneous architectures; Big Data, knowledge management, TD194-195, Renewable energy sources, Environmental sciences, GE1-350
heterogeneous architectures, Big Data, Environmental effects of industries and plants, ontology design, TJ807-830, ontology design; knowledge management; heterogeneous architectures; Big Data, knowledge management, TD194-195, Renewable energy sources, Environmental sciences, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
