
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Influence of Adaptive Comfort Models in Execution Cost Improvements for Housing Thermal Environment in Concepción, Chile

doi: 10.3390/su10072368
Most of the operational energy needed by the housing sector is used to compensate energy losses or thermal gains through the building’s envelope. As a result, any improvement in the thermal behavior will provide important opportunities to reduce energy consumption. This research analyzes improvements in the thermal envelope in social housing in the Greater Concepción area in Chile using adaptive thermal comfort models and thermal insulation investments. The objective set out is to evaluate the economic reduction of thermal envelope improvement costs for dwellings, which entails using the adaptive thermal comfort model obtained through monitoring and the surveys applied to the users of social housing in Concepción (CAS), against the international adaptive thermal comfort models established by the EN 15251:2007 and ASHRAE 55-2017 standards. Finally, it is concluded that, on having applied the social housing adaptive thermal comfort model (CAS), execution costs are reduced by between 28.8% and 58.2%, reaching a time of comfort in free oscillation similar to that obtained from applying the models of the EN 15251:2007 (74.2%) and ASHRAE 55-2017 standards (59.9%).
- University of Seville Spain
- University of Bío-Bío Chile
- University of Bío-Bío Chile
thermal environment, Environmental effects of industries and plants, social housing, TJ807-830, Social housing, TD194-195, Renewable energy sources, Adaptative comfort, adaptive comfort, Environmental sciences, Energy efficiency, Thermal environment, GE1-350, energy efficiency
thermal environment, Environmental effects of industries and plants, social housing, TJ807-830, Social housing, TD194-195, Renewable energy sources, Adaptative comfort, adaptive comfort, Environmental sciences, Energy efficiency, Thermal environment, GE1-350, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
