Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2018 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan

Authors: XU Jianzhong; Albina Assenova; Vasilii Erokhin;

Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan

Abstract

In recent years, the environmental effects of energy production have increasingly entered into the foreground of the sustainable development agenda. Hydrocarbon-abundant countries are blamed to become the largest emitters of greenhouse gases, trace metals, and other pollutants due to extensive use of oil, gas, and coal in energy production. Combustion of fossil fuels for heat and power generation is reported to be among the major reasons for progressing climate change globally. The United Nations and other international actors have called on national governments to substantially increase the share of renewable energy, but the main point is how to incentivize the resource-rich countries to shift to greener technologies. For the example of Kazakhstan, whose energy sector is centered on coal, this paper discusses the challenges and prospects of wind power as both an environmentally friendly and efficient option to support a transition of a resource-rich country to a green economy and a sustainable energy future. Forty-two locations across the country have been assessed on the parameters of average annual wind speed, wind availability, and four types of potential for wind power production: gross, technical, economic, and emissions reduction. Some of the key findings are that at the height below 50 m above ground level, wind power production is economically viable in electricity-deficientt southern territories, particularly, in Djungar, Saryzhas, Zhuzimdyk, and Taraz. In western, central, and northern parts of Kazakhstan, at a height above 50 m, the most promising areas for wind power production are Caspian, Northwestern, Central, and Tarbagatay corridors. The paper identifies the areas with the highest emission reduction potential and elaborates the policies to encourage the selection of wind farm locations based on their “economic potential-environmental effect” ratio. The approach allows assessing the opportunities, which decentralized wind energy systems offer to transition away from a dependence on fossil fuels and to enable sustainable economic growth.

Related Organizations
Keywords

sustainable development, wind power, renewable energy, Kazakhstan, greenhouse gases, electricity, environment, fossil fuel

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
gold