
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
SuDS & Sponge Cities: A Comparative Analysis of the Implementation of Pluvial Flood Management in the UK and China

doi: 10.3390/su11010213
In recent decades, rapid urbanization has resulted in a growing urban population, transformed into regions of exceptional socio-economic value. By removing vegetation and soil, grading the land surface and saturating soil air content, urban developments are more likely to be flooded, which will be further exacerbated by an anticipated increase in the number of intense rainfall events, due to climate change. To date, data collected show that urban pluvial flood events are on the rise for both the UK and China. This paper presents a critical review of existing sustainable approaches to urban flood management, by comparing UK practice with that in China and critically assessing whether lessons can be learnt from the Sponge City initiative. The authors have identified a strategic research plan to ensure that the sponge city initiative can successfully respond to extreme climatic events and tackle pluvial flooding. Hence, this review suggests that future research should focus on (1) the development of a more localized rainfall model for the Chinese climate; (2) the role of retrofit SuDS (Sustainable Drainage Systems) in challenging water environments; (3) the development of a robust SuDS selection tool, ensuring that the most effective devices are installed, based on local factors; and (4) dissemination of current information, and increased understanding of maintenance and whole life-costing, alongside monitoring the success of sponge cities to increase the confidence of decision makers (5) the community engagement and education about sponge cities.
- Coventry University United Kingdom
- Beijing Normal University China (People's Republic of)
- Beijing Normal University China (People's Republic of)
- White Rose Consortium: University of Leeds; University of Sheffield; University of York United Kingdom
- Xi'an University of Architecture and Technology China (People's Republic of)
urban flooding, Environmental effects of industries and plants, Sustainable Drainage Systems, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, future opportunities, sponge cities, GE1-350, TD, lessons to be learnt, QC, flood management
urban flooding, Environmental effects of industries and plants, Sustainable Drainage Systems, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, future opportunities, sponge cities, GE1-350, TD, lessons to be learnt, QC, flood management
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).86 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
