
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nutrient and Isotopic Dynamics of Litter Decomposition from Different Land Uses in Naturally Restoring Taihang Mountain, North China

doi: 10.3390/su11061752
Litter decomposition is a prominent pathway for nutrient availability and management in terrestrial ecosystems. An in-situ litter decomposition experiment was carried out for different land use types along an elevation gradient in the Taihang Mountain area restored after heavy forest degradation in the past. Four land use types, i.e., cropland, shrubland, grassland, and forest, selected randomly from a 300–700 m elevation were investigated for the experiment using the litter bag technique. Litter mass loss ranged from 26.9% (forest) to 44.3% (cropland) varying significantly among land use types. The initial litter quality, mainly N and C/N, had a significant effect on the litter loss rate. The interaction of elevation × land use types × time was significant (p < 0.001). Litter nutrient mobility (K > P ≈ N > C) of the decomposing litter was sporadic with substantial stoichiometric effects of C/N, N/P, and C/P. The residual litters were enriched in 15N and depleted in 13C as compared to the initial litter. Increment of N, P, and δ15N values in residual litter indicates that, even in the highly weathered substrate, plant litter plays a crucial role in conserving nutrients. This study is a strong baseline for monitoring the functioning of the Taihang Mountain ecosystem restored after the complete destruction in the early 1990s.
- Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Science (中国科学院) China (People's Republic of)
- Chinese Academy of Sciences (中国科学院) China (People's Republic of)
- Chinese Academy of Science China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
restoration, Environmental effects of industries and plants, TJ807-830, litter decomposition, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, nitrogen and carbon isotopes, different land use types, nutrient dynamics
restoration, Environmental effects of industries and plants, TJ807-830, litter decomposition, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, nitrogen and carbon isotopes, different land use types, nutrient dynamics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).16 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
