
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Transformation of Biomass Waste into Sustainable Organic Fertilizers

doi: 10.3390/su11082266
The management of solid waste presents a challenge for developing countries as the generation of waste is increasing at a rapid and alarming rate. Much awareness towards the sustainability and technological advances for solid waste management has been implemented to reduce the generation of unnecessary waste. The recycling of this waste is being applied to produce valuable organic matter, which can be used as fertilizers or amendments to improve the soil structure. This review studies the sustainable transformation of various types of biomass waste such as animal manure, sewage sludge, municipal solid waste, and food waste, into organic fertilizers and their impact on waste minimization and agricultural enhancement. The side effects of these organic fertilizers towards the soil are evaluated as the characteristics of these fertilizers will differ depending on the types of waste used, in addition to the varying chemical composition of the organic fertilizers. This work will provide an insight to the potential management of biomass waste to be produced into organic fertilizer and the advantages of substituting chemical fertilizer with organic fertilizer derived from the biomass waste.
- Universiti Teknologi MARA Malaysia
- Universiti Teknologi Petronas Malaysia
- University of Nottingham Malaysia Campus Malaysia
- University of Nottingham Malaysia Campus Malaysia
- Universiti Tenaga Nasional Malaysia
biomass, Environmental effects of industries and plants, TJ807-830, plant growth, sustainability, TD194-195, Renewable energy sources, Environmental sciences, organic fertilizer, waste, GE1-350
biomass, Environmental effects of industries and plants, TJ807-830, plant growth, sustainability, TD194-195, Renewable energy sources, Environmental sciences, organic fertilizer, waste, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).175 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
