
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Sustainable Integration of a Solar Heating System into a Single-Family House in the Climate of Central Europe—A Case Study

doi: 10.3390/su11154167
When designing a year-round home heating system that uses only solar radiation energy, the cooperation of an architect and an HVAC (heating, ventilation, and air conditioning) designer is necessary. These systems occupy a large area in relation to a building’s floor surface, especially when they are located in a climate like Central Europe or colder. The aim of the article was to create a balanced integration process by implementing the subsequent steps that are necessary to integrate a solar heating system within a building. In the first stage, a solar collector and a heat accumulator were selected. The innovation of the system involves the use of a solar concentrating collector as an air heater. Assessment criteria were then proposed in order to show the influence of the location of the solar heating system on the building’s architecture, functionality, and energy balance, while at the same time assuming its passive standard. System integrations concerning both an existing and new building were analyzed. The system’s basic components were selected for the three chosen solutions, taking into account the possibility of using heat losses resulting from the location of the installation.
Environmental effects of industries and plants, rock bed storage, TJ807-830, TD194-195, Renewable energy sources, solar concentrating collector, Environmental sciences, integration stages, GE1-350, all-year heating
Environmental effects of industries and plants, rock bed storage, TJ807-830, TD194-195, Renewable energy sources, solar concentrating collector, Environmental sciences, integration stages, GE1-350, all-year heating
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
