
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China

doi: 10.3390/su11154220
The realization of carbon emissions peak is important in the energy base area of China for the sustainable development of the socio-economic sector. The STIRPAT model was employed to analyze the elasticity of influencing factors of carbon emissions during 1990–2010 in the Xinjiang autonomous region, China. The results display that population growth is the key driving factor for carbon emissions, while energy intensity is the key restraining factor. With 1% change in population, gross domestic product (GDP) per capita, energy intensity, energy structure, urbanization level, and industrial structure, the change in carbon emissions was 0.80%, 0.48%, 0.20%, 0.07%, 0.58%, and 0.47%, respectively. Based on the results from regression analysis, scenario analysis was employed in this study, and it was found that Xinjiang would be difficult to realize carbon emissions peak early around 2030. Under the condition of the medium-high change rates in energy intensity, energy structure, industrial structure, and with the low-medium change rates in population, GDP per capita, and urbanization level, Xinjiang will achieve carbon emissions peak at of 626.21, 636.24, 459.53, and 662.25 million tons in the year of 2030, 2030, 2040, and 2040, respectively. At last, under the background of Chinese carbon emissions peak around 2030, this paper puts forward relevant policies and suggestions to the sustainable socio-economic development for the energy base area, Xinjiang autonomous region.
- Minjiang University China (People's Republic of)
- Freie Universität Berlin Germany
- Xinjiang University China (People's Republic of)
- University of Chinese Academy of Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
Environmental effects of industries and plants, TJ807-830, policy implications, TD194-195, peak, Renewable energy sources, Environmental sciences, energy base, STIRPAT model, GE1-350, carbon emissions
Environmental effects of industries and plants, TJ807-830, policy implications, TD194-195, peak, Renewable energy sources, Environmental sciences, energy base, STIRPAT model, GE1-350, carbon emissions
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
