
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building

doi: 10.3390/su11164265
In order to fulfil the UK government’s ambitious goal of 80% reductions in greenhouse gas emissions by 2050 compared to the levels of 1990s, unprecedented measures for improving the energy efficiency of buildings are needed. This study investigates the impact of a specific type of Low-emissivity (Low-E) window film—Thinsulate Climate Control 75—on the holistic energy consumption of an existing United Kingdom (UK) hotel building. Building modelling and energy simulation software EDSL TAS is used to conduct the study. The result of the simulations demonstrates that by applying Thinsulate films, savings in heating, cooling, and total energy consumptions are achieved by 3%, 20%, and 2.7%, respectively. Also 4.1% and 5.1% savings are achieved in annual CO2 emissions and total energy costs, respectively, while the initial costs may be an issue. This study found that application of Low-E window films results in slightly better energy performance of the hotel regarding its heating-dominant climate. The study also recommends using average annual actual energy consumption data for a time range, instead of picking a single year’s data for validating purposes.
- University of West London United Kingdom
- Chartered Institution of Building Services Engineers United Kingdom
- Chartered Institution of Building Services Engineers United Kingdom
- University of West London United Kingdom
simulation results validation, Environmental effects of industries and plants, Civil_env_eng, TJ807-830, Low-E window films, TD194-195, hotel buildings, Renewable energy sources, Environmental sciences, energy consumption, GE1-350, built
simulation results validation, Environmental effects of industries and plants, Civil_env_eng, TJ807-830, Low-E window films, TD194-195, hotel buildings, Renewable energy sources, Environmental sciences, energy consumption, GE1-350, built
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
