
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Sizing of Irregularly Arranged Boreholes Using Duct-Storage Model

doi: 10.3390/su11164338
As the sizing of borehole heat exchangers (BHEs) is crucial for ground-source heat pump systems, which are becoming increasingly complex and diverse, novel sizing tools are required that can size both boreholes and connected systems. Thus, an optimization-based sizing method that runs in TRNSYS with other component models is proposed. With a focus on the feasibility of the method for typical BHEs, the sizing of irregularly placed boreholes using the well-known duct-storage (DST) model that inherently cannot describe irregular borefields is examined. Recently developed modification methods are used for the DST model. The proposed sizing method is compared with the existing ground loop heat exchanger (GLHE) sizing program. The results indicate that the proposed method has a genuine difference of approximately 3% compared with the GLHE, and the difference increases with the thermal-interference effects. A regression-based method selected to modify the DST model for describing irregular borefields exhibits acceptable sizing results (approximately 5% for test cases) despite the genuine difference. This study is the first to use the DST model for sizing BHEs under irregular borefield configurations, and the tests indicated acceptable results with an approximate difference of one borehole among a total of 30 boreholes in the test cases.
- Inha University Korea (Republic of)
- Inha University Korea (Republic of)
irregular borehole arrangement, Environmental effects of industries and plants, TJ807-830, TD194-195, duct-storage model, Renewable energy sources, TRNSYS, Environmental sciences, GE1-350, optimization
irregular borehole arrangement, Environmental effects of industries and plants, TJ807-830, TD194-195, duct-storage model, Renewable energy sources, TRNSYS, Environmental sciences, GE1-350, optimization
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
