Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model

Authors: Zhijie Wang; Yuan Su;

Assessment of Soil Erosion in the Qinba Mountains of the Southern Shaanxi Province in China Using the RUSLE Model

Abstract

The Southern Shaanxi Province, an important ecological security barrier area in central China, is the primary water source of the south-to-north water transfer project in China. However, severe soil erosion seriously affects the safety of regional ecological security and water quality of the water diversion project. To reveal the characteristics and variation of soil erosion in the southern Shaanxi Province after the implementation of a series of eco-environmental construction measures, in this study, the spatio-temporal characteristics of soil erosion from 2000 to 2014 were evaluated based on the Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information Systems (GIS). The average soil erosion of southern Shaanxi Province in China was characterized as slight (less than 500 t·km–2·a–1) and mild erosion (500–2500 t·km–2·a–1) with an average soil erosion modulus of 1443.49 t·km–2·a–1, 1710.49 t·km–2·a–1, 1771.99 t·km–2·a–1 and 1647.74 t·km–2·a–1 in 2000, 2005, 2010 and 2014, respectively. The results revealed an increase in soil erosion until 2000 and a mitigation during the period of 2000 to 2014. After 2010, the soil erosion was controlled effectively. The spatial distribution of soil erosion displayed obvious spatial heterogeneity, and the high soil erosion (greater than 2500 t·km–2·a–1) was primarily distributed in the north-central and south counties of the study area. The soil erosion remained high and aggravated in six counties (i.e., Zhen’an, Zhashui, Ningshan, Ningqiang, Lueyang and Shanyang), and high erosion (greater than 5000 t·km–2·a–1) was found in the regions with slope gradients greater than 35 degrees and the middle mountainous (800–2000 m) regions. Therefore, the eco-environmental construction measures could effectively control soil erosion. However, unreasonable human activities remain the primary cause of soil erosion in the southern Shaanxi Province. In the future, more comprehensive and thorough ecological construction measures will be necessary to ensure regional ecological security and the eco-environmental quality of water sources.

Related Organizations
Keywords

soil erosion, Environmental effects of industries and plants, TJ807-830, RUSLE model, southern shaanxi province, TD194-195, grain for green program, Renewable energy sources, Environmental sciences, rusle model, southern Shaanxi Province, Grain for Green program, GE1-350, south-to-north water transfer project

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%
gold