
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters

doi: 10.3390/su12083299
Implementation of Dynamic Virtual Inertia Control of Supercapacitors for Multi-Area PV-Based Microgrid Clusters
In order to improve the dynamic stability of multi-area microgrid (MG) clusters in the autonomous mode, this study proposes a novel fuzzy-based dynamic inertia control strategy for supercapacitors in multi-area autonomous MG clusters. By virtue of the integral manifold theory, the interactive influence of inertia on dynamic stability for multi-area MG clusters is explored in detail. The energy function of multi-area MG clusters is constructed to further analyze the inertia constant. Based on the analysis of the mechanism, a control strategy for the fuzzy-based dynamic inertia control of supercapacitors for multi-area MG clusters is further proposed. For each sub-microgrid (sub-MG), the gain of the fuzzy-based dynamic inertia control is self-tuned dynamically, with system events being triggered, so as to flexibly and robustly enhance the dynamic performance of the multi-area MG clusters in the autonomous mode. To verify the effectiveness of the proposed control scheme, a three-area photovoltaic (PV)-based MG cluster is designed and simulated on the MATLAB/Simulink platform. Moreover, a comparison between the dynamic fuzzy-based inertial control method and an additional droop control method is finally presented to validate the advantages of the fuzzy-based dynamic inertial control approach.
- Wuhan University China (People's Republic of)
- Wuhan University China (People's Republic of)
supercapacitors, Environmental effects of industries and plants, fuzzy control, TJ807-830, TD194-195, Renewable energy sources, microgrid (MG) clusters, Environmental sciences, virtual inertia, dynamic stability, GE1-350
supercapacitors, Environmental effects of industries and plants, fuzzy control, TJ807-830, TD194-195, Renewable energy sources, microgrid (MG) clusters, Environmental sciences, virtual inertia, dynamic stability, GE1-350
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
