
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of Ventilation Efficiency in School Classrooms Based on Indoor–Outdoor Particulate Matter and Carbon Dioxide Measurements

doi: 10.3390/su12145600
The concentration of indoor suspended particulate matter is considered to be one of the main factors that affect health and quality of life. In Poland, in response to the pressure of public opinion, a few thousand air purifiers have been installed in public buildings where children spend time. However, another factor that also impacts upon the quality of indoor air, namely increased CO2 mixing ratios, is frequently overlooked. The only way to remove CO2 excess from interiors is through intensive ventilation. This is often an action at odds with the need to maintain low concentrations of particulate matter in indoor air. Two methods are presented to assess the rate of air exchange using CO2 or particulate matter as a tracer. One of the methods using indoor/outdoor PM (particulate matter) concentrations is based on the use of box models for analysis. The second one uses indoor CO2 concentration change analysis. At the tested locations, they showed large deviations of the determined values of the air exchange coefficients from its limits. Both methods showed consistent ventilation parameters estimation.
particulate matter, Environmental effects of industries and plants, ventilation, air pollution, carbon dioxide, TJ807-830, box models, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, indoor air quality
particulate matter, Environmental effects of industries and plants, ventilation, air pollution, carbon dioxide, TJ807-830, box models, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, indoor air quality
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
