
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Increased (Antibiotic-Resistant) Pathogen Indicator Organism Removal during (Hyper-)Thermophilic Anaerobic Digestion of Concentrated Black Water for Safe Nutrient Recovery

doi: 10.3390/su12229336
Source separated toilet water is a valuable resource for energy and fertilizers as it has a high concentration of organics and nutrients, which can be reused in agriculture. Recovery of nutrients such as nitrogen, phosphorous, and potassium (NPK) decreases the dependency on energy-intensive processes or processes that rely on depleting natural resources. In new sanitation systems, concentrated black water (BW) is obtained by source-separated collection of toilet water. BW-derived products are often associated with safety issues, amongst which pathogens and antibiotic-resistant pathogens. This study presents results showing that thermophilic (55–60 °C) and hyperthermophilic (70 °C) anaerobic treatments had higher (antibiotic-resistant) culturable pathogen indicators removal than mesophilic anaerobic treatment. Hyperthermophilic and thermophilic anaerobic treatment successfully removed Escherichia coli and extended-spectrum β-lactamases producing E. coli from source-separated vacuum collected BW at retention times of 6–11 days and reached significantly higher removal rates than mesophilic (35 °C) anaerobic treatment (p < 0.05). The difference between thermophilic and hyperthermophilic treatment was insignificant, which justifies operation at 55 °C rather than 70 °C. This study is the first to quantify (antibiotic-resistant) E. coli in concentrated BW (10–40 gCOD/L) and to show that both thermophilic and hyperthermophilic anaerobic treatment can adequately remove these pathogen indicators.
- Wageningen University & Research Netherlands
TJ807-830, TD194-195, Renewable energy sources, pathogen removal, Black water, nutrient recovery, GE1-350, Source separation, black water, Antibiotics resistance, Environmental effects of industries and plants, Environmental sciences, Nutrient recovery, Pathogen removal, source separation, antibiotics resistance, (hyper-)thermophilic anaerobic digestion
TJ807-830, TD194-195, Renewable energy sources, pathogen removal, Black water, nutrient recovery, GE1-350, Source separation, black water, Antibiotics resistance, Environmental effects of industries and plants, Environmental sciences, Nutrient recovery, Pathogen removal, source separation, antibiotics resistance, (hyper-)thermophilic anaerobic digestion
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
