Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Hybrid MCDM Approach towards Resilient Sourcing

Authors: Ahmed Mohammed; Morteza Yazdani; Amar Oukil; Ernesto D. R. Santibanez Gonzalez;

A Hybrid MCDM Approach towards Resilient Sourcing

Abstract

Achieving a supply chain that is resilient to potential unforeseen disruptions (e.g., strikes, floods, tsunamis, etc.) remains one of the vital concerns of decision makers (DMs). To build up a reactive supply chain plan towards resilience, the purchasing department needs to pay the strictest attention to sourcing decisions. This study contributes to the literature through developing an efficient resilient supplier selection approach based on a new holistic framework that enables the identification of key resilience pillars (RPs) and traditional business criteria (TBC) in light of a thorough literature review and experts’ opinions. To this end, the relative importance of TBC/RP was measured by applying the DEMATEL (D) method. This was followed by the application of MABAC-OCRA-TOPSIS-VIKOR (MOTV) methods to verify the suppliers’ ranking. Furthermore, the Spearman rank correlation coefficient (SRCC) approach was used to investigate the correlation among the suppliers’ ranking, revealed via the four methods. In this work, a real sourcing problem of scrap metal for a steel manufacturing company was solved to prove the applicability of the proposed approach. The research outcome revealed that the TBC of “trust” is the most important criterion, followed by the “cost”, leaving the “geographical location” criterion as the least important one. In this context, the RP of “flexibility” attained the highest relative weight compared to “agility”, which secured the lowest weight. The results also showed “absolute” correlation among MABAC, VIKOR, and OCRA compared to “very strong” correlation between TOPSIS and the others. This research can support supply chain managers to achieve supply chain systems that reduce not only sourcing costs, but also potential losses because of disrupting threats, by building resilient supply chains.

Keywords

Environmental effects of industries and plants, multi-criteria decision making, TJ807-830, TD194-195, Renewable energy sources, multi-criteria decision making; resilient sourcing pillars; supply chain resilience; supplier selection; hybrid decision making tool, Environmental sciences, hybrid decision making tool, supply chain resilience, supplier selection, GE1-350, resilient sourcing pillars

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 1%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research