
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insight into the Composition of the Stabilized Residual from a Full-Scale Mechanical-Biological Treatment (MBT) Plant in Terms of the Potential Recycling and Recovery of Its Contaminants

doi: 10.3390/su13105432
There is a lack of knowledge about the composition and particle size distribution of the <80 mm fraction mechanically separated from residual municipal solid waste (rMSW) and the stabilized residual (SR) after aerobic stabilization in a full-scale MBT plant. Therefore, the composition of the particle size fractions (>60 mm, 60–40 mm, 40–10 mm) of the <80 mm fraction and SR, collected in all seasons (summer (S), autumn (A), winter (W), spring (Sp)), was determined. Biodegradable waste (vegetable waste, other organic waste, paper, cardboard) constituted from 44.1% (A) to 54.3% (Sp) of the <80 mm fraction and it decreased to 8.5% (W) to 17.1% (S) in the SR, after effective biodegradation. In SR, the smaller particle size fractions (up to 40 mm) predominated. The main contaminants in SR were plastic, glass, metal, and other waste. Hierarchical clustering indicated that the composition of the particle size fractions of SR was more similar across four seasons than that of the <80 mm fraction. After stabilization and separation, the share of contaminants increased in the SR size fractions, which means that their recovery before landfilling may be profitable. This suggests a new direction in waste management that would be consistent with the principles of a circular economy, in which a waste product, like SR, which previously could only be landfilled, becomes a source of secondary materials.
Environmental effects of industries and plants, TJ807-830, glass recovery, contamination ratio, TD194-195, biodegradable waste, Renewable energy sources, Environmental sciences, stabilized residual, similarity of particle size fractions, GE1-350
Environmental effects of industries and plants, TJ807-830, glass recovery, contamination ratio, TD194-195, biodegradable waste, Renewable energy sources, Environmental sciences, stabilized residual, similarity of particle size fractions, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
