
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessment of Spatiotemporal Peak Shift of Intra-Urban Transportation Taking a Case in Bangkok, Thailand

doi: 10.3390/su13126777
Reducing congestion has been one of the critical targets of transportation policies, particularly in cities in developing countries suffering severe and chronic traffic congestions. Several traditional measures have been in place but seem not very successful. This paper applies the agent-based transportation model MATSim for a transportation analysis in Bangkok to assess the impact of spatiotemporal transportation demand management measures. We collect required data for the simulation from various data sources and apply maximum likelihood estimation with the limited data available. We investigate two demand management scenarios, peak time shift, and decentralization. As a result, we found that these spatiotemporal peak shift measures are effective for road transport to alleviate congestion and reduce travel time. However, the effect of those measures on public transport is not uniform but depends on the users’ circumstances. On average, the simulated results indicate that those measures increase the average travel time and distance. These results suggest that demand management policies require considerations of more detailed conditions to improve usability. The study also confirms that microsimulation can be a tool for transport demand management assessment in developing countries.
- Technical University of Munich Germany
- University of Tokyo Japan
- Kasetsart University Thailand
- Kagawa University Japan
- Kasetsart University Thailand
public transport, Environmental effects of industries and plants, microsimulation, TJ807-830, developing countries, TD194-195, Renewable energy sources, Environmental sciences, MATSim, traffic congestion, GE1-350, urban transport
public transport, Environmental effects of industries and plants, microsimulation, TJ807-830, developing countries, TD194-195, Renewable energy sources, Environmental sciences, MATSim, traffic congestion, GE1-350, urban transport
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
