
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Thermal Comfort in Places of Worship within a Mediterranean Climate

doi: 10.3390/su13137233
This paper investigates the relationship between the actual thermal comfort levels measured according to EN 16798-1 standard and the expected thermal comfort of attendees in five parish churches throughout 2018. This is carried out through statistical analysis of qualitative research based on questionnaire responses from church goers and quantitative research based on indoor measured data. This investigation includes the gathering of scientific data relating to temperature and relative humidity together with statistical data through thermal sensation surveys (TSSs). Thus, this study provides first-hand information about occupants’ diversities of thermal sensations and dynamic behaviour adaptations to the intricate environment within churches. Results determine that a significant correlation exists between the actual thermal comfort levels measured according to EN 16798-1 standard and the expected thermal comfort perceived by the church attendees in most of the parish churches under review. Analysis of the sources of discomfort and suggestions made by the occupants revealed that passive design measures contribute towards improved indoor thermal conditions, reduced energy demand and lower carbon emissions. This information provides assurance for optimised decision-making methods, used to generate accurate solutions for policy-makers, architects and engineers, with an understanding of practical applications of passive measures for places of worship. Moreover, the paper provides insight on indoor comfort levels in places of worship within a Mediterranean context, which is insufficiently addressed by scholars at a global level.
- University of Malta Malta
- University of Valladolid Spain
- "UNIVERSIDAD DE VALLADOLID Spain
thermal comfort, TJ807-830, relative humidity, TD194-195, Renewable energy sources, Heating, Buildings -- Environmental engineering -- Malta, GE1-350, indoor temperature, Environmental effects of industries and plants, thermal sensation surveys, Sustainable buildings -- Malta, Architecture and energy conservation -- Malta, Humidity -- Malta, Environmental sciences, Energy conservation -- Equipment and supplies, churches
thermal comfort, TJ807-830, relative humidity, TD194-195, Renewable energy sources, Heating, Buildings -- Environmental engineering -- Malta, GE1-350, indoor temperature, Environmental effects of industries and plants, thermal sensation surveys, Sustainable buildings -- Malta, Architecture and energy conservation -- Malta, Humidity -- Malta, Environmental sciences, Energy conservation -- Equipment and supplies, churches
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
