
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Performance Investigation of Switched Reluctance Motor Driven by Quasi-Z-Source Integrated Multiport Converter with Different Switching Algorithms

doi: 10.3390/su13179517
Switched reluctance machines (SRMs) have received increasing attention for their many potential uses, such as for wind power and electric vehicle (EV) drive systems. The Quasi-Z-source Integrated Multiport Converter (QZIMPC) was recently introduced to improve the reliability of the SRM driver through small capacitance values. It is not possible, however, to simultaneously energize and deenergize two SRM phases in QZIMPC. This phenomenon can significantly increase the commutation period which, in turn, degrades the performance of SRM; in addition, this causes high-voltage ripples on the converter’s capacitors. Two switching algorithms are introduced and applied in this paper, and their performance with SRM is investigated in terms of torque ripple and peak phase current. The algorithms are based on prioritizing the control command in the on-going and off-going phases to fulfill the required load torque, as well as to accelerate the commutation process where possible. This is achieved without the interference of high-level controllers, which include speed controllers and/or torque ripple minimization. Through the simulation results, a comparison between the two switching algorithms is presented to determine their potential to improve the SRM drive system’s performance.
- China University of Mining and Technology China (People's Republic of)
- China University of Mining and Technology China (People's Republic of)
- Aswan University Egypt
switched reluctance machine (SRM), Environmental effects of industries and plants, TJ807-830, TD194-195, quasi-Z-source, Renewable energy sources, Environmental sciences, wide-speed range, GE1-350, commutation
switched reluctance machine (SRM), Environmental effects of industries and plants, TJ807-830, TD194-195, quasi-Z-source, Renewable energy sources, Environmental sciences, wide-speed range, GE1-350, commutation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
