
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Assessing the Plant Phytoremediation Efficacy for Azolla filiculoides in the Treatment of Textile Effluent and Redemption of Congo Red Dye onto Azolla Biomass

doi: 10.3390/su13179588
Assessing the Plant Phytoremediation Efficacy for Azolla filiculoides in the Treatment of Textile Effluent and Redemption of Congo Red Dye onto Azolla Biomass
In this work, Azolla filiculoides was used for the bioremediation of a textile effluent and as a potential sorbent for the rejection of Congo red (CR9) dye from a synthetic aqueous solution. The sorbent was characterized, and a pot culture test was carried out to assess the physiological responses in a controlled environment. The response of the plants to the exposure to the emanating pollutants was subordinate. The BOD, COD, and TDS removals were found to be 98.2%, 98.23%, and 90.29%, respectively. Moreover, the dried biomass was studied for the expulsion of CR9, and the process variables were optimized. The maximum CR9 removal was 95% at the optimal conditions of 2 g/L of the sorbent dose at acidic pH. Equilibrium data for adsorption were analyzed using a two-parameter isotherm model. It was observed that the Langmuir isotherm fit with the data (R2 = 0.98) and also had satisfactory lower error values, with its maximum sorption capacity reaching 243 mg/g. The pseudo-second-order kinetics were well fitted (R2 = 0.98). The mass transfer models and the thermodynamic parameters of the system were evaluated. The regeneration studies also showed that the uptake efficacy in the fifth cycle is reduced by 20% when compared with the first cycle. The results show that the biomass was a capable sorbent for the removal of CR9.
- Hongik University Korea (Republic of)
- Sathyabama Institute of Science and Technology India
- Sri Sivasubramaniya Nadar College of Engineering India
- King Saud University Saudi Arabia
- Sri Sivasubramaniya Nadar College of Engineering India
<i>Azolla filiculoides</i>, Environmental effects of industries and plants, toxic pollutants, TJ807-830, phytoremediation, TD194-195, Renewable energy sources, Environmental sciences, adsorption, kinetics, GE1-350
<i>Azolla filiculoides</i>, Environmental effects of industries and plants, toxic pollutants, TJ807-830, phytoremediation, TD194-195, Renewable energy sources, Environmental sciences, adsorption, kinetics, GE1-350
3 Research products, page 1 of 1
- 2011IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).13 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
