
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Anomaly Detection with Machine Learning Algorithms and Big Data in Electricity Consumption

doi: 10.3390/su131910963
When analyzing smart metering data, both reading errors and frauds can be identified. The purpose of this analysis is to alert the utility companies to suspicious consumption behavior that could be further investigated with on-site inspections or other methods. The use of Machine Learning (ML) algorithms to analyze consumption readings can lead to the identification of malfunctions, cyberattacks interrupting measurements, or physical tampering with smart meters. Fraud detection is one of the classical anomaly detection examples, as it is not easy to label consumption or transactional data. Furthermore, frauds differ in nature, and learning is not always possible. In this paper, we analyze large datasets of readings provided by smart meters installed in a trial study in Ireland by applying a hybrid approach. More precisely, we propose an unsupervised ML technique to detect anomalous values in the time series, establish a threshold for the percentage of anomalous readings from the total readings, and then label that time series as suspicious or not. Initially, we propose two types of algorithms for anomaly detection for unlabeled data: Spectral Residual-Convolutional Neural Network (SR-CNN) and an anomaly trained model based on martingales for determining variations in time-series data streams. Then, the Two-Class Boosted Decision Tree and Fisher Linear Discriminant analysis are applied on the previously processed dataset. By training the model, we obtain the required capabilities of detecting suspicious consumers proved by an accuracy of 90%, precision score of 0.875, and F1 score of 0.894.
- University of Bucharest Romania
- Bucharest University of Economic Studies Romania
- Bucharest University of Economic Studies Romania
- Polytechnic University of Bucharest Romania
fraud detection, Environmental effects of industries and plants, unsupervised and supervised machine learning, TJ807-830, TD194-195, anomaly detection, Renewable energy sources, Environmental sciences, big data, GE1-350, smart grid
fraud detection, Environmental effects of industries and plants, unsupervised and supervised machine learning, TJ807-830, TD194-195, anomaly detection, Renewable energy sources, Environmental sciences, big data, GE1-350, smart grid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).55 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
