Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes

Authors: Wang, Xing; Sun, Hailong; Tan, Changming; Wang, Xiaowen; Xia, Min;

Effects of Film Mulching on Plant Growth and Nutrients in Artificial Soil: A Case Study on High Altitude Slopes

Abstract

Vegetation restoration on slopes is generally difficult, especially in high altitude areas since the environment has dramatically changing weather conditions that are not suitable for plant growth. In this study, the potential of film mulching for vegetation restoration in such environments and plant growth and nutrients in artificial soil on slopes in high altitude areas were determined. Experiments were carried out in Jiuzhaigou County, Sichuan Province, to determine plant growth and nutrients in artificial soil on slopes under six different coverage rates (40%, 50%, 60%, 70%, 80% and 90%). Results showed that in each observation period, plant height, ground diameter and contents of EN, EP and EK in the soil of the film mulching treatment were significantly higher than those of the control, while the number of plant individuals per unit area was significantly lower than that of the control. When the coverage rate was 90%, plant height, ground diameter, biomass and nutrient contents in the soil were all higher than those under the other five treatments. Overall, our study suggested that applying film mulching technology when performing vegetation restoration on slopes in high altitude areas is promising, since it can promote plant growth and preserve soil fertility.

Related Organizations
Keywords

Environmental effects of industries and plants, TJ807-830, plant, film mulching, high altitude areas, TD194-195, Renewable energy sources, Environmental sciences, nutrients, slope, GE1-350, coverage rate

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research