
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development of an Algorithm for Regulating the Load Schedule of Educational Institutions Based on the Forecast of Electric Consumption within the Framework of Application of the Demand Response

doi: 10.3390/su132413801
There is a tendency to increase the use of demand response technology in the Russian Federation along with other developing countries, covering not only large industries, but also individual households and organizations. Reducing peak loads of electricity consumption and increasing energy efficient use of equipment in the power system is achieved by applying demand management technology based on modeling and predicting consumer behavior in an educational institution. The study proposes to consider the possibility of participating in the concept of demand management of educational institutions with a typical workload schedule of the work week. For the study, statistical data of open services and sources, Russian and foreign research on the use of digital and information technologies, analytical methods, methods of mathematical modeling, methods of analysis, and generalization of data and statistical methods of data processing are used. An algorithm for collecting and processing power consumption data and a load planning algorithm were developed, including all levels of interaction between devices. A comparison was made between the values of the maximum daily consumption before and after optimization, as well as the magnitude of the decrease in the maximum consumption after applying the genetic algorithm. The developed algorithm has the ability to scale, which will increase the effect of using the results of this study to more significant values. Load switching helps to reduce peak consumption charges, which often represent a significant portion of the electricity cost.
- Saint Petersburg Mining University Russian Federation
- Saint Petersburg Mining University Russian Federation
Environmental effects of industries and plants, Internet of Things, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, demand response; energy efficiency; energy saving; Internet of Things; machine learning; big data; digital technologies, machine learning, demand response, energy saving, big data, GE1-350, energy efficiency
Environmental effects of industries and plants, Internet of Things, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, demand response; energy efficiency; energy saving; Internet of Things; machine learning; big data; digital technologies, machine learning, demand response, energy saving, big data, GE1-350, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).19 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
