Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers

Authors: Mahdiyeh Eslami; Mehdi Neshat; Saifulnizam Abd. Khalid;

A Novel Hybrid Sine Cosine Algorithm and Pattern Search for Optimal Coordination of Power System Damping Controllers

Abstract

This paper presents an effective hybrid optimization technique based on a chaotic sine cosine algorithm (CSCA) and pattern search (PS) for the coordinated design of power system stabilizers (PSSs) and static VAR compensator (SVC)-based controllers. For this purpose, the design problem is considered as an optimization problem whose decision variables are the controllers’ parameters. Due to the nonlinearities of large, interconnected power systems, methods capable of handling any nonlinearity of power networks are preferable. In this regard, a nonlinear time domain-based objective function was used. Then, the proposed hybrid chaotic sine cosine pattern search (hCSC-PS) algorithm was employed for solving this optimization problem. The proposed method employed the global search ability of SCA and the local search ability of PS. The performance of the new hCSC-PS was investigated using a set of benchmark functions, and then the results were compared with those of the standard SCA and some other methods from the literature. In addition, a case study from the literature is considered to evaluate the efficiency of the proposed hCSC-PS for the coordinated design of controllers in the power system. PSSs and additional SVC controllers are being considered to demonstrate the feasibility of the new technique. In order to ensure the robustness and performance of the proposed controller, the objective function is evaluated for various extreme loading conditions and system configurations. The numerical investigations show that the new approach may provide better optimal damping and outperforms previous methods. Nonlinear time-domain simulation shows the superiority of the proposed controller and its ability in providing efficient damping of electromechanical oscillations.

Country
Malaysia
Keywords

PSS, Environmental effects of industries and plants, sine cosine algorithm, TJ807-830, 006, oscillation, TD194-195, Renewable energy sources, TK Electrical engineering. Electronics Nuclear engineering, Environmental sciences, SVC, pattern search, GE1-350, sine cosine algorithm; pattern search; PSS; SVC; optimization; oscillation, optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 1%
Top 10%
Top 1%
gold