
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
How Many Electric Vehicles Are Needed to Reach CO2 Emissions Goals? A Case Study from Montreal, Canada

doi: 10.3390/su14031441
In the province of Quebec, Canada where the electricity is nearly carbon-free, the road transport sector represents 35.6% of all emissions. As such, electric vehicles (EVs) have been proposed as a means to reduce such emissions. However, it is not clear how many conventional vehicles (CVs) would need to change to electric in order to meet the greenhouse gas (GHG) emissions reduction target of reducing 1990 CO2 emissions by 37.5% by 2030 in the province. In fact, various considerations exist such as which vehicles will change and how those vehicles are used. This articleaddresses this issue in the case of Montreal, Canada. First, to create a baseline, direct emissions by all personal vehicles in Montreal in 2018 are calculated using data from the 2018 origin-destination (OD) survey and provincial vehicle registration. Next, five scenarios are studied to calculate the variations in the number of EVs needed in the fleet in order to achieve provincial targets. The most optimistic scenario shows that roughly 49% of the fleet would need to change. The most pessimistic scenario estimates that almost 73% of the fleet would need to be converted to EVs. It can be concluded that the strategy used can have a great impact on how many vehicles need to be replaced in the fleet. However, all simulations show that the necessary replacements are far from negligible. It must surely be coupled with other actions such as reducing veh.km travelled (vkmt) or increasing public transport use.
- Polytechnique Montréal Canada
- Polytechnique Montréal Canada
- Concordia University Canada
emission targets, Environmental effects of industries and plants, TJ807-830, TD194-195, electric vehicles; vehicle ownership; GHG emissions; CO<sub>2</sub> emissions; emission targets, Renewable energy sources, GHG emissions, Environmental sciences, CO<sub>2</sub> emissions, vehicle ownership, GE1-350, electric vehicles
emission targets, Environmental effects of industries and plants, TJ807-830, TD194-195, electric vehicles; vehicle ownership; GHG emissions; CO<sub>2</sub> emissions; emission targets, Renewable energy sources, GHG emissions, Environmental sciences, CO<sub>2</sub> emissions, vehicle ownership, GE1-350, electric vehicles
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
