
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Comprehensive Evaluation of Electricity Planning Models in Egypt: Optimization versus Agent-Based Approaches

doi: 10.3390/su14031563
A rational assessment of electricity generation technologies constitutes a cornerstone to attain a sustainable and secure electricity plan. The Egyptian government is struggling with the accelerated growth of the national electricity demand through setting up and examining different future electricity scenarios and through the implementation of energy models to secure the provision of affordable and clean energy as part of the United Nations 2030 agenda of achieving the 17 sustainable development goals (SDGs). However, conventional techno-economic models still represent for many countries an attractive tool for energy planning. We investigate in this article the added values of applying a dynamic multi-criteria spatial-agent model that covers several sustainability dimensions versus an optimization techno-economic model for future energy planning in Egypt. Moreover, we report on the historical development of electricity supply since 2009 in Egypt. The study reveals predominant advantages of applying the agent-based modeling approach, which simulates the evolution of an energy transition landscape through the interactive and adaptive dynamic decision behavior of different societal groups (agents) in response to changes in the whole system. The study advocates the implementation of a dynamic agent-based bottom-up approach for the planning of a future sustainable electricity mix in Egypt.
- Leibniz Association Germany
- Leibniz Centre for Agricultural Landscape Research Germany
- Universität Hamburg Germany
- Cairo University Egypt
sustainable development, Environmental effects of industries and plants, TJ807-830, sustainable development ; energy modeling ; optimization modeling ; bottom-up energy model ; agent-based modeling, bottom-up energy model, agent-based modeling, TD194-195, optimization modeling, Renewable energy sources, Environmental sciences, energy modeling, GE1-350
sustainable development, Environmental effects of industries and plants, TJ807-830, sustainable development ; energy modeling ; optimization modeling ; bottom-up energy model ; agent-based modeling, bottom-up energy model, agent-based modeling, TD194-195, optimization modeling, Renewable energy sources, Environmental sciences, energy modeling, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
