Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MediaTUM
Article . 2021
Data sources: MediaTUM
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria

Authors: Amor Fezzani; Idriss Hadj-Mahammed; Abdellah Kouzou; Layachi Zaghba; Said Drid; Messaouda Khennane; Ralph Kennel; +1 Authors

Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria

Abstract

Energy efficiency and ratio performance are two key parameters for the analysis of the performance of photovoltaic (PV) modules. The present paper focusses on the assessment of the efficiency of four different photovoltaic module technologies based on energy efficiency and ratio performance. These PV modules were installed at the Applied Research Unit in Renewable Energy (URAER) in Algeria and were used to provide experimental data to help local and international economical actors with performance enhancement and optimal choice of different technologies subject to arid outdoor conditions. The modules studied in this paper are: two thin-film modules of copper indium selenide (CIS), hetero-junction with intrinsic thin-layer silicon (HIT) and two crystalline silicon modules (polycrystalline (poly-Si), monocrystalline (mono-Si)). These technologies were initially characterized using a DC regulator based on their measured I-V characteristics under the same outdoor climate conditions as the location where the monitoring of the electrical energy produced from each PV module was carried out. The DC regulator allows for extracting the maximum electrical power. At the same time, the measurements of the solar radiation and temperature were obtained from a pyranometer type Kipp & ZonenTM CMP21 and a Pt-100 temperature sensor (Kipp & Zonen, Delft, Netherlands). These measurements were performed from July 2020 to June 2021. In this work, the monthly average performance parameters such as energy efficiency are given and analyzed. The average efficiency of the modules over 12 months was evaluated at 4.74%, 7.65%, 9.13% and 10.27% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The calculated percentage deviations in the efficiency of the modules were 8.49%, 18.88%, 19.74% and 23.57% for the HIT, CIS, mono-Si and poly-Si modules, respectively. The low variation in the efficiency of the HIT module can be attributed to the better operation of this module under arid outdoor conditions, which makes it a promising module for adaptation to the region concerned.

Keywords

multi-technology PV; module temperature; energy efficiency; efficiency percentage deviation; ratio performance, Environmental effects of industries and plants, TJ807-830, module temperature, TD194-195, Renewable energy sources, Environmental sciences, multi-technology PV, ratio performance, GE1-350, efficiency percentage deviation, energy efficiency, ddc: ddc:

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold