Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Conference object
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation

Authors: Hassan El-Ramady; Neama Abdalla; Zakaria Fawzy; Khandsuren Badgar; Xhensila Llanaj; Gréta Törős; Peter Hajdú; +2 Authors

Green Biotechnology of Oyster Mushroom (Pleurotus ostreatus L.): A Sustainable Strategy for Myco-Remediation and Bio-Fermentation

Abstract

The field of biotechnology presents us with a great chance to use many organisms, such as mushrooms, to find suitable solutions for issues that include the accumulation of agro-wastes in the environment. The green biotechnology of mushrooms (Pleurotus ostreatus L.) includes the myco-remediation of polluted soil and water as well as bio-fermentation. The circular economy approach could be effectively achieved by using oyster mushrooms (Pleurotus ostreatus L.), of which the substrate of their cultivation is considered as a vital source for producing biofertilizers, animal feeds, bioenergy, and bio-remediators. Spent mushroom substrate is also considered a crucial source for many applications, including the production of enzymes (e.g., manganese peroxidase, laccase, and lignin peroxidase) and bioethanol. The sustainable management of agro-industrial wastes (e.g., plant-based foods, animal-based foods, and non-food industries) could reduce, reuse and recycle using oyster mushrooms. This review aims to focus on the biotechnological applications of the oyster mushroom (P. ostreatus L.) concerning the field of the myco-remediation of pollutants and the bio-fermentation of agro-industrial wastes as a sustainable approach to environmental protection. This study can open new windows onto the green synthesis of metal-nanoparticles, such as nano-silver, nano-TiO2 and nano-ZnO. More investigations are needed concerning the new biotechnological approaches.

Keywords

Environmental effects of industries and plants, myco-remediator, TJ807-830, bio-fermenter, TD194-195, white-rot fungi, Renewable energy sources, Environmental sciences, agro-industrial residues, pollutants, waste recycling, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    44
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
44
Top 10%
Top 10%
Top 1%
gold
Related to Research communities
Energy Research