Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand

Authors: Pannee Cheewinsiriwat; Chanita Duangyiwa; Manlika Sukitpaneenit; Marc E. J. Stettler;

Influence of Land Use and Meteorological Factors on PM2.5 and PM10 Concentrations in Bangkok, Thailand

Abstract

Particulate matter (PM) is regarded a major problem worldwide because of the harm it causes to human health. Concentrations of PM with particle diameter less than 2.5 µm (PM2.5) and with particle diameter less than 10 µm (PM10) are based on various emission sources as well as meteorological factors. In Bangkok, where the PM2.5 and PM10 monitoring stations are few, the ability to estimate concentrations at any location based on its environment will benefit healthcare policymakers. This research aimed to study the influence of land use, traffic load, and meteorological factors on the PM2.5 and PM10 concentrations in Bangkok using a land-use regression (LUR) approach. The backward stepwise selection method was applied to select the significant variables to be included in the resultant models. Results showed that the adjusted coefficient of determination of the PM2.5 and PM10 LUR models were 0.58 and 0.57, respectively, which are in the same range as reported in the previous studies. The meteorological variables included in both models were rainfall and air pressure; wind speed contributed to only the PM2.5 LUR model. Further, the land-use types selected in the PM2.5 LUR model were industrial and transportation areas. The PM10 LUR model included residential, commercial, industrial, and agricultural areas. Traffic load was excluded from both models. The root mean squared error obtained by 10-fold cross validation was 9.77 and 16.95 for the PM2.5 and PM10 LUR models, respectively.

Related Organizations
Keywords

PM<sub>2.5</sub>, Environmental effects of industries and plants, land use regression model, meteorological factors, PM<sub>10</sub>, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, land use regression model; PM<sub>2.5</sub>; PM<sub>10</sub>; meteorological factors; Bangkok, Bangkok, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold