Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Approach for the Biological Desalination of Major Anions in Seawater Using Three Microalgal Species: A Kinetic Study

Authors: Madeha O. I. Ghobashy; Omar Bahattab; Aishah Alatawi; Meshari M. Aljohani; Mohamed M. I. Helal;

A Novel Approach for the Biological Desalination of Major Anions in Seawater Using Three Microalgal Species: A Kinetic Study

Abstract

The global water shortage alert has been upgraded to a higher risk level. Consequently, a sustainable approach for ecofriendly, energy efficient water desalination is required for agricultural and municipal water reuse. In this study, an energy-efficient biological desalination process was used to treat chloride anions, which are the most abundant anion salt in seawater. Three algal species were studied: Scenedismus arcuatusa (S. arcuatusa), Chlorella vulgaris (C. vulgaris), and Spirulina maxima (Sp. maxima), under different operating conditions (saline concentrations, contact time, high light intensity, and CO2 supply), and two kinetic models were used. It was identified that under a high light intensity and CO2 supply, S. arcuatusa enhanced chloride removal from 32.42 to 48.93%; the daily bioaccumulation capacity (Qe), according to the kinetic models, was enhanced from 124 to 210 mg/g/day; and the net biomass production was enhanced from 0.02 to 0.740 g/L. The EDX analysis proved that salt bioaccumulation may be attributed to the replacement of Ca2+ and Mg2+ with Na+ and K+ through algal cells. The study’s findings provide promising data that can be used in the search for novel energy-efficient alternative ecofriendly desalination technologies based on algae biological systems with biomass byproducts that can be reused in a variety of ways.

Keywords

Environmental effects of industries and plants, microalgae, bio-desalination; chloride anion; microalgae; kinetic modeling; Saudi Arabia, chloride anion, Saudi Arabia, TJ807-830, kinetic modeling, TD194-195, Renewable energy sources, Environmental sciences, bio-desalination, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
gold