Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synthesis and Characterization of Zero-Valent Fe-Cu and Fe-Ni Bimetals for the Dehalogenation of Trichloroethylene Vapors

Authors: Settimi C.; Zingaretti D.; Sanna S.; Verginelli I.; Luisetto I.; Tebano A.; Baciocchi R.;

Synthesis and Characterization of Zero-Valent Fe-Cu and Fe-Ni Bimetals for the Dehalogenation of Trichloroethylene Vapors

Abstract

In this study, zero-valent iron-copper (Fe-Cu) and iron-nickel (Fe-Ni) bimetals were prepared by disc milling for the dehalogenation of trichloroethylene vapors. For both Fe-Ni and Fe-Cu, three combinations in terms of percentage of secondary metal added were produced (1%, 5%, 20% by weight) and the formation of the bimetallic phase by milling was evaluated by X-ray diffraction (XRD) analysis. The disc milled bimetals were characterized by a homogenous distribution of Ni or Cu in the Fe phase and micrometric size visible from scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) analysis and by a relatively low specific surface area (0.2–0.7 m2/g) quantified by the Brunauer–Emmett–Teller (BET) method. The reactivity of the produced bimetals was evaluated by batch degradation tests of TCE in the gas phase with 1 day of reaction time. Fe-Ni bimetals have shown better performance in terms of TCE removal (57–75%) than Fe-Cu bimetals (41–55%). The similar specific surface area values found for the produced bimetals indicated that the enhancement in the dehalogenation achieved using bimetals is closely related to the induced catalysis. The obtained results suggest that ZVI-based bimetals produced by disc milling are effective in the dehalogenation of TCE vapors in partially saturated conditions.

Country
Italy
Keywords

570, zero-valent iron, Environmental effects of industries and plants, Settore ICAR/03 - INGEGNERIA SANITARIA - AMBIENTALE, TJ807-830, chlorinated solvent vapors, TD194-195, Renewable energy sources, dechlorination, Environmental sciences, Settore CEAR-02/A - Ingegneria sanitaria-ambientale, disc milling, bimetallic, GE1-350, zero-valent iron; bimetallic; disc milling; dechlorination; chlorinated solvent vapors

Powered by OpenAIRE graph
Found an issue? Give us feedback