Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China

Authors: Weifan Long; Xiaofei Chen; Qingsong Ma; Xindong Wei; Qiao Xi;

An Evaluation of the PV Integrated Dynamic Overhangs Based on Parametric Performance Design Method: A Case Study of a Student Apartment in China

Abstract

A photovoltaic shading device (PVSD) is a promising technology that can both generate electricity and provide shading to reduce indoor energy consumption. This paper aims to evaluate the performance of three PVSD design strategies in five Chinese cities by using a proposed all-in-one simulation program, according to the parametric performance design method. The program can be used to predict the energy consumption, power generation, and economic feasibility of different PVSD strategies. It was, firstly, calibrated through an actual experiment which was carried out in Qingdao and, secondly, used to simulate the energy consumption and generation of the three PVSD strategies in relation to the optimal angles and heights. Finally, the program was used to calculate the energy efficiency and economic feasibility of the three strategies. The findings indicated that the move-shade strategy of PVSD can provide the best energy-saving performance, followed by rotate-shade and fixed-shade strategies. Compared to the no-shade strategy, the reduction of the net energy use intensity by using the move-shade strategy was 31.80% in Shenzhen, 107.36% in Kunming, 48.37% in Wuhan, 61.79% in Qingdao, and 43.83% in Changchun. The payback periods of the three strategies ranged from 5 to 16 years when using the PVSD in China.

Related Organizations
Keywords

power generation, Environmental effects of industries and plants, net energy use intensity (EUI), TJ807-830, PVSD; parametric design; performance evaluation; net energy use intensity (EUI); power generation, TD194-195, Renewable energy sources, performance evaluation, Environmental sciences, parametric design, PVSD, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
gold