Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement

Authors: Farqad Najim; Sami Kaplan; Hayder Mohammed; Anmar Dulaimi; Azher Abed; Raed Ibrahem; Fadhil Al-Qrimli; +3 Authors

Evaluation of Melting Mechanism and Natural Convection Effect in a Triplex Tube Heat Storage System with a Novel Fin Arrangement

Abstract

In this research, a numerical analysis is accomplished aiming to investigate the effects of adding a new design fins arrangement to a vertical triplex tube latent heat storage system during the melting mechanism and evaluate the natural convection effect using Ansys Fluent software. In the triplex tube, phase change material (PCM) is included in the middle tube, while the heat transfer fluid (HTF) flows through the interior and exterior pipes. The proposed fins are triangular fins attached to the pipe inside the PCM domain in two different ways: (1) the base of the triangular fins is connected to the pipe, (2) the tip of the triangular fins is attached to the pipe and the base part is directed to the PCM domain. The height of the fins is calculated to have a volume equal to that of the uniform rectangular fins. Three different cases are considered as the final evaluation toward the best case as follows: (1) the uniform fin case (case 3), (2) the reverse triangular fin case with a constant base (case 12), (3) the reverse triangular fin case with a constant height (case 13). The numerical results show that the total melting times for cases 3 and 12 increase by 4.0 and 10.1%, respectively, compared with that for case 13. Since the PCM at the bottom of the heat storage unit melts slower due to the natural convection effect, a flat fin is added to the bottom of the heat storage unit for the best case compared with the uniform fin cases. Furthermore, the heat storage rates for cases 3 and 12 are reduced by 4.5 and 8.5%, respectively, compared with that for case 13, which is selected as the best case due to having the lowest melting time (1978s) and the highest heat storage rate (81.5 W). The general outcome of this research reveals that utilizing the tringle fins enhances the thermal performance and the phase change rate.

Country
Turkey
Keywords

Behavior, Environmental effects of industries and plants, triangular fin, Performance Enhancement, thermal energy storage, TJ807-830, Energy-Storage, thermal energy storage; phase change process; triangular fin; vertical heat exchanger; heat transfer enhancement, TD194-195, phase change process, Renewable energy sources, Phase-Change Material, Environmental sciences, Pcm, Lubrication, GE1-350, vertical heat exchanger, Exchanger, Configuration, heat transfer enhancement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Green
gold