
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Introductory Engineering Mathematics Students’ Weighted Score Predictions Utilising a Novel Multivariate Adaptive Regression Spline Model

doi: 10.3390/su141711070
Introductory Engineering Mathematics (a skill builder for engineers) involves developing problem-solving attributes throughout the teaching period. Therefore, the prediction of students’ final course grades with continuous assessment marks is a useful toolkit for degree program educators. Predictive models are practical tools used to evaluate the effectiveness of teaching as well as assessing the students’ progression and implementing interventions for the best learning outcomes. This study develops a novel multivariate adaptive regression spline (MARS) model to predict the weighted score WS (i.e., the course grade). To construct the proposed MARS model, Introductory Engineering Mathematics performance data over five years from the University of Southern Queensland, Australia, were used to design predictive models using input predictors of online quizzes, written assignments, and examination scores. About 60% of randomised predictor grade data were applied to train the model (with 25% of the training set used for validation) and 40% to test the model. Based on the cross-correlation of inputs vs. the WS, 12 distinct combinations with single (i.e., M1–M5) and multiple (M6–M12) features were created to assess the influence of each on the WS with results bench-marked via a decision tree regression (DTR), kernel ridge regression (KRR), and a k-nearest neighbour (KNN) model. The influence of each predictor on WS clearly showed that online quizzes provide the least contribution. However, the MARS model improved dramatically by including written assignments and examination scores. The research demonstrates the merits of the proposed MARS model in uncovering relationships among continuous learning variables, which also provides a distinct advantage to educators in developing early intervention and moderating their teaching by predicting the performance of students ahead of final outcome for a course. The findings and future application have significant practical implications in teaching and learning interventions or planning aimed to improve graduate outcomes in undergraduate engineering program cohorts.
- University of Southern Queensland Australia
- Al-Ayen University Iraq
- University of the Sunshine Coast Australia
- Al-Ayen University Iraq
- Universiti Teknologi MARA Malaysia
Environmental effects of industries and plants, educational decision making; multivariate regression spline model; student performance; artificial intelligence in education; engineering mathematics student performance, artificial intelligence in education, 610, TJ807-830, TD194-195, 310, educational decision making, Renewable energy sources, 510, multivariate regression spline model, Environmental sciences, student performance, engineering mathematics student performance, GE1-350
Environmental effects of industries and plants, educational decision making; multivariate regression spline model; student performance; artificial intelligence in education; engineering mathematics student performance, artificial intelligence in education, 610, TJ807-830, TD194-195, 310, educational decision making, Renewable energy sources, 510, multivariate regression spline model, Environmental sciences, student performance, engineering mathematics student performance, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).6 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
