
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Accelerating the Transition to a Circular Economy for Net-Zero Emissions by 2050: A Systematic Review

doi: 10.3390/su141811656
handle: 10576/54273
Achieving net-zero emissions by 2050 will require tackling both energy-related and non-energy-related GHG emissions, which can be achieved through the transition to a circular economy (CE). The focus of climate change crisis reversal has been on the energy-related continuum over the years through promoting renewable energy uptake and efficiency in energy use. Clean energy transition and efficiency gains in energy use alone will not be sufficient to achieve net-zero emissions in 2050 without paying attention to non-energy-related CO2 emissions. This study systematically reviews the CE literature across different themes, sectors, approaches, and tools to identify accelerators in transitioning to a CE. The study aims to understand and explore how technology, finance, ecosystem, and behavioral studies in the CE paradigm can be integrated as a decision-making tool for CE transition. The material analysis was carried out by identifying the main characteristics of the literature on CE implementation in the agriculture, industry, energy, water, and tourism sectors. Results of the literature survey are synthesized to engender clarity in the literature and identify research gaps to inform future research. Findings show that many studies focused on technology as an accelerator for CE transition, and more studies are needed regarding the CE ecosystem, financing, and behavioral aspects. Also, results show that CE principles are applied at the micro-, meso-, and macro- (national, regional, and global) levels across sectors with the dominance of the industrial sector. The agriculture, water, and energy sectors are at the initial stages of implementation. Additionally, the use of carbon capture and utilization or storage, conceptualized as a circular carbon economy, needs attention in tackling CE implementation in the energy sector, especially in hydrocarbon-endowed economies. The major implication of these findings is that for CE to contribute to accelerated net-zero emission by 2050, coordinated policies should be promoted to influence the amount of financing available to innovative circular businesses and technologies within an ecosystem that engenders behavioral change towards circularity.
- Qatar University Qatar
- Hamad bin Khalifa University Qatar
- Hamad bin Khalifa University Qatar
- Qatar University Qatar
TJ807-830, TD194-195, Renewable energy sources, carbon capture and utilization, recuperative technologies, circular carbon economy, GE1-350, Environmental effects of industries and plants, circular carbon economy; energy transition; carbon capture and utilization; collaborative energy economy; recuperative technologies; energy efficient economy, Environmental sciences, energy transition, energy efficient economy, collaborative energy economy
TJ807-830, TD194-195, Renewable energy sources, carbon capture and utilization, recuperative technologies, circular carbon economy, GE1-350, Environmental effects of industries and plants, circular carbon economy; energy transition; carbon capture and utilization; collaborative energy economy; recuperative technologies; energy efficient economy, Environmental sciences, energy transition, energy efficient economy, collaborative energy economy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
