Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Removal of Diclofenac Sodium from Wastewater in Microbial Fuel Cell by Anode Modified with MnCo2O4

Authors: Roya Morovati; Mohammad Hoseini; Abooalfazl Azhdarpoor; Mansooreh Dehghani; Mohammad Ali Baghapour; Saeed Yousefinejad;

Removal of Diclofenac Sodium from Wastewater in Microbial Fuel Cell by Anode Modified with MnCo2O4

Abstract

Microbial fuel cell (MFC) with a modified anode is one of the new methods to increase MFC efficiency. This study synthesized an anode modified with cobalt manganese oxide (MnCo2O4@CF) on carbon felt (CF) by easy hydrothermal method and binder-free. Chemical oxygen demand (COD) was measured with and without diclofenac (DCF). According to SEM results, MnCo2O4 was uniformly dispersed on the anode electrode surface. Moreover, the maximum power density in COD (1000 mg/L), 48 h. condition without DCF (726 mA/m2) was 165 ± 0.012 mW/m2 and with DCF concentration of 20 mg/L, it was 308 ± 0.013 mW/m2 (992 mA/m2). In addition, in the presence of 10 mg/L DCF concentration, the maximum COD removal efficiency was 82% ± 1.93 at 48 h. COD removal efficiency without DCF was 94.67% ± 0.02 at 72 h. After 72 h, the maximum removal efficiency of COD and DCF in the carbon anode was 41% ± 1.15 and 9.5% ± 0.23, respectively. Moreover, the maximum DCF removal efficiency using a MnCo2O4 anode was 56% ± 0.55, at 48 h; the initial COD concentration was 500 mg/L, and the DCF concentration was 20 mg/L. This research showed that coating the anode with MnCo2O4 could lead to the increased growth of microorganisms on the surface of the anode, decreased load transfer resistance, increased power density, and more removal of COD and DCF. As a result, the performance of fuel cells with modified anode and removal of DCF increased compared to anode with CF-MFC. Thus, the performance of fuel cells with modified anode and removal of DCF increased compared to anode with CF-MFC.

Related Organizations
Keywords

Environmental effects of industries and plants, anode modification, power density, TJ807-830, COD, TD194-195, Renewable energy sources, diclofenac, Environmental sciences, microbial fuel cell, GE1-350, manganese cobalt oxide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold