Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-Intrusive Load Monitoring of Residential Loads via Laplacian Eigenmaps and Hybrid Deep Learning Procedures

Authors: Arash Moradzadeh; Sahar Zakeri; Waleed A. Oraibi; Behnam Mohammadi-Ivatloo; Zulkurnain Abdul-Malek; Reza Ghorbani;

Non-Intrusive Load Monitoring of Residential Loads via Laplacian Eigenmaps and Hybrid Deep Learning Procedures

Abstract

Today, introducing useful and practical solutions to residential load disaggregation as subsets of energy management has created numerous challenges. In this study, an intelligence hybrid solution based on manifold learning and deep learning applications is presented. The proposed solution presents a combined structure of Laplacian eigenmaps (LE), a convolutional neural network (CNN), and a recurrent neural network (RNN), called LE-CRNN. In the proposed model architecture, LE, with its high ability in dimensional reduction, transfers the salient features and specific values of power consumption curves (PCCs) of household electrical appliances (HEAs) to a low-dimensional space. Then, the combined model of CRNN significantly improves the structure of CNN in fully connected layers so that the process of identification and separation of the HEA type can be performed without overfitting problems and with very high accuracy. In order to implement the suggested model, two real-world databases have been used. In a separate scenario, a conventional CNN is applied to the data for comparing the performance of the suggested model with the CNN. The designed networks are trained and validated using the PCCs of HEAs. Then, the whole energy consumption of the building obtained from the smart meter is used for load disaggregation. The trained networks, which contain features extracted from PCCs of HEAs, prove that they can disaggregate the total power consumption for houses intended for the Reference Energy Disaggregation Data Set (REDD) and Almanac of Minutely Power Dataset (AMPds) with average accuracies (Acc) of 97.59% and 97.03%, respectively. Finally, in order to show the accuracy of the developed hybrid model, the obtained results in this study are compared with the results of similar works for the same datasets.

Country
Malaysia
Keywords

690, Environmental effects of industries and plants, bidirectional long short-term memory, convolutional neural network, TJ807-830, Laplacian eigenmaps, TD194-195, Renewable energy sources, TK Electrical engineering. Electronics Nuclear engineering, Environmental sciences, non-intrusive load monitoring, residential load disaggregation, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold