Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Appropriate Model for the Prediction of Rock Mass Deformation Modulus among Various Artificial Intelligence Models

Authors: Sajjad Hussain; Naseer Muhammad Khan; Muhammad Zaka Emad; Abdul Muntaqim Naji; Kewang Cao; Qiangqiang Gao; Zahid Ur Rehman; +4 Authors

An Appropriate Model for the Prediction of Rock Mass Deformation Modulus among Various Artificial Intelligence Models

Abstract

The rock mass deformation modulus (Em) is an essential input parameter in numerical modeling for assessing the rock mass behavior required for the sustainable design of engineering structures. The in situ methods for determining this parameter are costly and time consuming. Their results may not be reliable due to the presence of various natures of joints and following difficult field testing procedures. Therefore, it is imperative to predict the rock mass deformation modulus using alternate methods. In this research, four different predictive models were developed, i.e., one statistical model (Muti Linear Regression (MLR)) and three Artificial Intelligence models (Artificial Neural Network (ANN), Random Forest Regression (RFR), and K-Neighbor Network (KNN)) by employing Rock Mass Rating (RMR89) and Point load index (I50) as appropriate input variables selected through correlation matrix analysis among eight different variables to propose an appropriate model for the prediction of Em. The efficacy of each predictive model was evaluated by using four different performance indicators: performance coefficient R2, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Median Absolute Error (MEAE). The results show that the R2, MAE, MSE, and MEAE for the ANN model are 0.999, 0.2343, 0.2873, and 0.0814, respectively, which are better than MLR, KNN, and RFR. Therefore, the ANN model is proposed as the most appropriate model for the prediction of Em. The findings of this research will provide a better understanding and foundation for the professionals working in fields during the prediction of various engineering parameters, especially Em for sustainable engineering design in the rock engineering field.

Keywords

Environmental effects of industries and plants, TJ807-830, performance indicators, TD194-195, Renewable energy sources, rock mass deformation modulus; correlation matrix; intelligence models; performance indicators, Environmental sciences, rock mass deformation modulus, correlation matrix, GE1-350, intelligence models

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold