Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Safety Analysis of Merging Vehicles Based on the Speed Difference between on-Ramp and Following Mainstream Vehicles Using NGSIM Data

Authors: Qinaat Hussain; Charitha Dias; Ali Al-Shahrani; Intizar Hussain;

Safety Analysis of Merging Vehicles Based on the Speed Difference between on-Ramp and Following Mainstream Vehicles Using NGSIM Data

Abstract

Highway merging points are critical elements due to the interactions between merging vehicles and following vehicles on the outermost lane of the highway stream. Such interactions could have significant implications for safety and capacity at ramp locations. The aim of this study was to investigate the spacing adjustment behavior by the interacting drivers at merging locations. In this regard, we relied on the NGSIM trajectory dataset to investigate the impacts of the speed difference between the following and merging vehicles on a space headway, considering different geometric designs and vehicle classes. Nonlinear regression models were estimated to analyze the interactions. The results showed a significant and exponential tendency for headway reduction, particularly when the difference in speed was higher than 30 km/h. In addition, the findings revealed that the highway with an auxiliary lane performed better in terms of headway reduction. Furthermore, the space headway reduction trend was higher when the following vehicle was a truck rather than a car. Policymakers and practitioners aiming to improve road safety at merging locations could use this study’s findings. The resulting parameters can also be utilized in microsimulation models, e.g., for headway adjustment behavior in car-following models.

Country
Qatar
Related Organizations
Keywords

space headway, on-ramps, NGSIM data, Environmental effects of industries and plants, safety distance; merging vehicles; on-ramps; NGSIM data; space headway; nonlinear models, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, merging vehicles, safety distance, GE1-350, nonlinear models

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research