
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Review on Superadsorbents with Adsorption Capacity ≥1000 mg g−1 and Perspectives on Their Upscaling for Water/Wastewater Treatment

doi: 10.3390/su142416927
An adsorbent’s properties, its adsorption chemistry, and treatment efficiency are all interlinked for water/wastewater treatment. This critical review focuses on superadsorbents possessing ultrahigh adsorption capacities of ≥1000 mg g−1 for an efficient water/wastewater treatment. Using Google Scholar, we reviewed about 63 prominent studies (2017–2022) on superadsorbents to evaluate their preparation, characteristics, adsorption chemistries, and mechanistic interactions in the removal of aqueous inorganic and organic contaminants. The major contribution of this article is to present a series of perspectives on the potential upscaling of these adsorbents in real-scale water/wastewater treatment. The main findings are as follows: (1) the current literature analysis suggests that superadsorbents hold reasonable promise to become useful materials in water treatment, (2) there is still a need to perform extensive pilot-scale adsorption studies using superadsorbents under quasi-real systems representing complex real aqueous systems, and (3) the technoeconomic analysis of their upscaling in industrial-scale water/wastewater treatments still constitutes a major gap which calls for further studies. Moreover, the mass production and effective application of these superadsorbents are the major issues for real-scale water treatments.
- Sultan Qaboos University Oman
- University of Johannesburg South Africa
- University of Johannesburg South Africa
- Bharath University India
- Aarhus University Denmark
superadsorbent, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, wastewater treatment, water pollutants, adsorption, pollutant removal, GE1-350
superadsorbent, Environmental effects of industries and plants, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, wastewater treatment, water pollutants, adsorption, pollutant removal, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
