Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective

Authors: Zhao Xin-gang; Wang Wei; Hu Shuran; Liu Xuan;

Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective

Abstract

As a kind of renewable energy, biomass power has great development potential in mitigating greenhouse gas emissions. Therefore, under the background of carbon peak and carbon neutrality, the diffusion of biomass power generation technology has practical significance. To address these issues, this paper constructs a system dynamics model to study the impact of different policy effects on the diffusion of biomass power generation technologies. The results show that the feed-in tariff policy can significantly promote the installed capacity growth of biomass power generation projects; on the other hand, carbon emission trading increases the investment value of projects and promotes the growth of the installed capacity of biomass power generation projects, to a certain extent, so relevant policies need to be improved to achieve the promotion of biomass power generation technology in the future.

Related Organizations
Keywords

system dynamic, Environmental effects of industries and plants, TJ807-830, TD194-195, government policies, Renewable energy sources, Environmental sciences, biomass power, government policies; biomass power; system dynamic; adoption, GE1-350, adoption

Powered by OpenAIRE graph
Found an issue? Give us feedback