Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Precursory Analysis of Water-Bearing Rock Fracture Based on The Proportion of Dissipated Energy

Authors: Lixiao Hou; Kewang Cao; Naseer Muhammad Khan; Danial Jahed Armaghani; Saad S. Alarifi; Sajjad Hussain; Muhammad Ali;

Precursory Analysis of Water-Bearing Rock Fracture Based on The Proportion of Dissipated Energy

Abstract

In order to better understand the failure process of water-bearing rocks, samples of water-bearing sandstone were tested uniaxially. The failure process and the development of internal cracks were studied through the evolution characteristics of dissipated strain energy and particle flow simulation. In this study, we found that: (1) The presence of water in sandstone results in a reduction in energy storage capacity as well as strength. (2) The dissipated energy ratio curve of sandstone samples and simulated samples’ internal fracture development curve has obvious stages. The dissipated energy ratio turning point and the rapid fracture development point are defined as the failure precursor points of sandstone samples and simulated samples, respectively. In both sandstone samples and simulated samples, the ratio between failure precursor stress and peak strength remains almost unchanged under various water conditions. (3) The ratio of fracture to dissipated energy (RFDE) of sandstone is proposed, and interpreted as the increased number of cracks in the rock under the unit dissipated. On this basis, the fracture initiation dissipated energy (FIDE) of sandstone under different water cut conditions is determined, that is, the dissipation threshold corresponding to the start of the development of sandstone internal cracks. (4) The analysis shows that RFDE increases exponentially and FIDE decreases negatively with the scale-up in moisture content. Further, high moisture content sandstone consumes the same dissipative strain energy, which will lead to more fractures in its interior. The research in this paper can lay a theoretical and experimental foundation for monitoring and early warning of rock engineering disasters such as coal mining, tunnel excavation, slope sliding, and instability.

Keywords

Environmental effects of industries and plants, TJ807-830, PFC simulation, TD194-195, proportion of dissipated energy, Renewable energy sources, Environmental sciences, fracture development, GE1-350, moisture sandstone, precursory damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold