Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems

Authors: Iman Ahmadianfar; Bijay Halder; Salim Heddam; Leonardo Goliatt; Mou Leong Tan; Zulfaqar Sa’adi; Zainab Al-Khafaji; +3 Authors

An Enhanced Multioperator Runge–Kutta Algorithm for Optimizing Complex Water Engineering Problems

Abstract

Water engineering problems are typically nonlinear, multivariable, and multimodal optimization problems. Accurate water engineering problem optimization helps predict these systems’ performance. This paper proposes a novel optimization algorithm named enhanced multioperator Runge–Kutta optimization (EMRUN) to accurately solve different types of water engineering problems. The EMRUN’s novelty is focused mainly on enhancing the exploration stage, utilizing the Runge–Kutta search mechanism (RK-SM), the covariance matrix adaptation evolution strategy (CMA-ES) techniques, and improving the exploitation stage by using the enhanced solution quality (IESQ) and sequential quadratic programming (SQP) methods. In addition to that, adaptive parameters were included to improve the stability of these two stages. The superior performance of EMRUN is initially tested against a set of CEC-17 benchmark functions. Afterward, the proposed algorithm extracts parameters from an eight-parameter Muskingum model. Finally, the EMRUM is applied to a practical hydropower multireservoir system. The experimental findings show that EMRUN performs much better than advanced optimization approaches. Furthermore, the EMRUN has demonstrated the ability to converge up to 99.99% of the global solution. According to the findings, the suggested method is a competitive algorithm that should be considered in optimizing water engineering problems.

Keywords

hydropower multireservoir, Environmental effects of industries and plants, water engineering problems, Runge–Kutta optimization, TJ807-830, TD194-195, Renewable energy sources, Environmental sciences, Muskingum model, water engineering problems; Runge–Kutta optimization; hydropower multireservoir; Muskingum model; sequential quadratic programming, GE1-350, sequential quadratic programming

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
gold