
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Environmental Sustainability of Industrial Waste-Based Cementitious Materials: A Review, Experimental Investigation and Life-Cycle Assessment

doi: 10.3390/su15031873
Wall plaster production induces significant environmental impacts during its entire life as it consumes a high amount of cement and natural resources. Therefore, in sustainable development, industrial wastes are partially replaced to produce cementitious material to reduce environmental impacts. This study aims to identify the optimal environmental benefits from the waste-based cementitious materials that are used to produce wall plaster. Thus, this study involved conducting a comprehensive review of the mechanical and sustainable performance of industrial waste-based cementitious materials focused on wall construction. Then, an experimental test was conducted to ensure the appropriate mix design to enable the required compressive strength. A comparative analysis of mortar showed that it contained 15% (by weight) of fly ash, blast furnace slag, bottom ash, recycled glass, ferronickel slag, expanded polystyrene and wood ash using life-cycle assessment. The results show that mortar containing fly ash has lower environmental impacts in almost all impact categories (i.e., human health, the ecosystem and natural resources). Endpoint damage assessment of mortar mixtures expresses resource extraction cost as the most affected impact criteria. The replacement of globally consumed cement with 15% fly ash can contribute to monetary savings of up to USD 87.74 billion. The assessment clarifies the advantage of incorporating waste products in cement mortar, which allows policymakers to interpret the analysis for decision making. This study also found that the production of industrial wastes for mortar mixes has a significant impact on the environment.
- RMIT University Australia
- RMIT University Australia
recycled glass, life-cycle analysis, Environmental effects of industries and plants, TJ807-830, environmental impacts, compressive strength, TD194-195, Renewable energy sources, Environmental sciences, blast furnace slag, fly ash, GE1-350
recycled glass, life-cycle analysis, Environmental effects of industries and plants, TJ807-830, environmental impacts, compressive strength, TD194-195, Renewable energy sources, Environmental sciences, blast furnace slag, fly ash, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
