
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Land Swap Option for Sustainable Production of Oil Palm Plantations in Kalimantan, Indonesia

doi: 10.3390/su15032394
Indonesia is the largest producer of palm oil; it is essential to manage its palm oil industry in a sustainable manner through swapping the oil palm plantation in peatland to mineral soil to reduce the greenhouse gas emissions. This study employed the latest spatial data using the ArcGIS software to analyze the potential area for the land swap option and to calculate the potential reduction in greenhouse gas emissions in Kalimantan, Indonesia. There are 1.08 million ha of oil palm in peatland, while 0.64 million ha of the area in mineral soil under the convertible production forest have the potential for land swapping. Via the land-swap option, emission reductions of 65.43% (from 979.05 MtCO2eq to 336.64 MtCO2eq) for the calculation period of 25 years and up to 61.19% (from 2147.81 MtCO2eq to 833.67 MtCO2eq) for that of 50 years is possible compared to the initial condition. The land swap will also increase the production of fresh fruit bunch (FFB) by 17.16% per year because the productivity of FFB in mineral soil is higher than that of the peatland. Considering that land swaps are costly, policymakers and stakeholders must collaborate to execute the land-swap option for the sustainability of Indonesian palm oil.
- Kyoto University Japan
- Ministry of Environment and Forestry Indonesia
- National Research and Innovation Agency Indonesia
- University of Tsukuba Japan
- National Research and Innovation Agency Indonesia
productivity, Environmental effects of industries and plants, TJ807-830, emission reduction, TD194-195, Renewable energy sources, land swap, Environmental sciences, climate change, peatland, GE1-350, SDGs
productivity, Environmental effects of industries and plants, TJ807-830, emission reduction, TD194-195, Renewable energy sources, land swap, Environmental sciences, climate change, peatland, GE1-350, SDGs
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
