Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence

Authors: Ahmed Fathy; Hegazy Rezk; Dalia Yousri; Abdullah G. Alharbi; Sulaiman Alshammari; Yahia B. Hassan;

Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence

Abstract

In this research work, the best operating conditions of microbial electrolysis cells (MECs) were identified using artificial intelligence and modern optimization. MECs are innovative materials that can be used for simultaneous wastewater treatment and bio-hydrogen production. The main objective is the maximization of bio-hydrogen production during the wastewater treatment process by MECs. The suggested strategy contains two main stages: modelling and optimal parameter identification. Firstly, using adaptive neuro-Fuzzy inference system (ANFIS) modelling, an accurate model of the MES was created. Secondly, the optimal parameters of the operating conditions were determined using the jellyfish optimizer (JO). Three operating variables were studied: incubation temperature (°C), initial potential of hydrogen (pH), and influent chemical oxygen demand (COD) concentration (%). Using some measured data points, the ANFIS model was built for simulating the output of MFC considering the operating parameters. Afterward, a jellyfish optimizer was applied to determine the optimal temperature, initial pH, and influent COD concentration values. To demonstrate the accuracy of the proposed strategy, a comparison with previous approaches was conducted. For the modelling stage, compared with the response surface methodology (RSM), the coefficient of determination increased from 0.8953 using RSM to 0.963 using ANFIS, by around 7.56%. In addition, the RMSE decreased from 0.1924 (using RSM) to 0.0302 using ANFIS, whereas for the optimal parameter identification stage, the optimal values were 30.2 °C, 6.53, and 59.98 (%), respectively, for the incubation temperature, the initial potential of hydrogen (pH), and the influent COD concentration. Under this condition, the maximum rate of the hydrogen production is 1.252 m3H2/m3d. Therefore, the proposed strategy successfully increased the hydrogen production from 1.1747 m3H2/m3d to 1.253 m3H2/m3d by around 6.7% compared to RSM.

Keywords

bio-hydrogen, Environmental effects of industries and plants, TJ807-830, microbial electrolysis cell, artificial intelligence, TD194-195, Renewable energy sources, Environmental sciences, GE1-350, optimization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold