Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Life Cycle Emissions of Passenger Vehicles in China: A Sensitivity Analysis of Multiple Influencing Factors

Authors: Haoyi Zhang; Fuquan Zhao; Han Hao; Zongwei Liu;

Life Cycle Emissions of Passenger Vehicles in China: A Sensitivity Analysis of Multiple Influencing Factors

Abstract

To reduce greenhouse gas emissions from passenger vehicles, new energy vehicles are actively promoted by China’s government. Various power system types are being developed and their sales keep increasing. However, there is uncertainty about the greenhouse gas emission of different vehicle types. This paper studies the life cycle carbon emissions of passenger vehicles in China. A calculation model is established with consideration of all types of power systems, model classes, and electric driving ranges. In order to calculate and compare the effect of carbon emission reduction on all types of vehicles, a sensitivity analysis is conducted in two ways to study three of the main influencing factors. The results show the carbon emission-reducing effect of different factors on different stages in the life cycle. It is known that different influencing factors have different effects on these stages. Since there is a variation in different vehicle types, the carbon reduction effect caused by these factors is different for these vehicle types. This paper describes a sensitivity analysis of three main influencing factors and puts forward relevant policy recommendations to reduce the carbon emissions of passenger cars during their life cycle based on these results. It is necessary to take the vehicle life cycle as a whole for carbon emission management. The conclusions of this paper can be used for vehicle manufacturers to decide the focus of technology research, and also have important reference significance for enterprises when making life cycle carbon reduction strategies for their products. It is also of certain value for China to formulate a medium- and long-term carbon emission reduction strategy for the passenger car industry.

Related Organizations
Keywords

Environmental effects of industries and plants, greenhouse gas emissions, greenhouse gas emissions; new energy vehicle; life cycle assessment; power generation industry, TJ807-830, TD194-195, new energy vehicle, Renewable energy sources, Environmental sciences, power generation industry, life cycle assessment, GE1-350

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold