
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling the Cause-and-Effect Relationships between the Causes of Damage and External Indicators of RC Elements Using ML Tools

doi: 10.3390/su15065250
Reinforced concrete (RC) structures are used in a wide range of applications, including high-rise buildings, nuclear power plants, oil and gas platforms, bridges, and other infrastructure. However, over time, RC structures can be subject to deterioration and damage, particularly from exposure to weather and environmental conditions, heavy traffic loads, and other factors. Regular inspections, diagnosing the condition, maintenance, and repair can help to mitigate the effects of degradation and extend the life of the structure. The task of this study was to determine the possible causes of the defects of the RC elements based on the identification of external indicators using the ML tools. This study created and compared the performance of four ML models, namely, Support Vector Regression (SVR), decision trees (DTs), random forest (RF), and Artificial Neural Networks (ANNs). The first comparison showed a rather low performance of all models, with a slight advantage of the ANN model. Later, six ANN models were optimized to obtain a higher level of performance. The next step of this study was the training, validation, and testing of ANN models. Analysis of MAPE and R2 metrics showed that the ANN model with an Adaptative Moment (ADAM) loss function and sigmoid activation had the best results (MAPE 3.38%; R2 0.969). The novelty of the study consisted of the development of the ML model, which is based on the use of ANNs, and allows for the establishment of cause-and-effect relationships in the diagnosis of the technical condition of the RC elements. The advantage of using ANN to solve this problem is the possibility to obtain a forecast in the form of continuous values. Moreover, the model can be used further without retraining, and it can make predictions on datasets it has not yet “seen”. The practical use of such a model will allow for the diagnosis of some causes of defects during a visual inspection of structures.
- National University of Water Management and Nature Resources Use Ukraine
- Kyiv National University of Construction and Architecture Ukraine
- National University of Water Management and Nature Resources Use Ukraine
- Warsaw University of Life Sciences Poland
- Kyiv National University of Construction and Architecture Ukraine
Environmental effects of industries and plants, external indicators, TJ807-830, reinforced concrete, TD194-195, Renewable energy sources, Environmental sciences, cause-and-effect relationships, machine learning, external indicators; causes of defects; cause-and-effect relationships; artificial neural network; machine learning; reinforced concrete, GE1-350, causes of defects, artificial neural network
Environmental effects of industries and plants, external indicators, TJ807-830, reinforced concrete, TD194-195, Renewable energy sources, Environmental sciences, cause-and-effect relationships, machine learning, external indicators; causes of defects; cause-and-effect relationships; artificial neural network; machine learning; reinforced concrete, GE1-350, causes of defects, artificial neural network
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
