Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sustainabilityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sustainability
Article . 2023
Data sources: DOAJ
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel

Authors: Fatih Selimefendigil; Damla Okulu; Hakan F. Öztop;

Photovoltaic Thermal Management by Combined Utilization of Thermoelectric Generator and Power-Law-Nanofluid-Assisted Cooling Channel

Abstract

In this study, two different cooling systems for the thermal management of a photovoltaic (PV) module were developed. A PV/thermoelectric generator (TEG) and PV/TEG-mini-channel cooling systems were considered; in the later system, water and water-based Al2O3 nanofluids were used in the cooling channel. The effective cooling of the PV module was achieved by using higher-loading nanoparticles in the base fluid, while the nanofluid exhibited a non-Newtonian behavior. The PV/TEG with a cooling channel system was numerically assessed with respect to various values of Reynolds numbers (between 5 and 250), inlet nanofluid temperatures (between 288.15 K and 303.15 K), and nanoparticle volume fractions in the base fluid (between 1% and 5%). Variations in average cell temperature, PV power, TEG power, and efficiencies were computed by varying the pertinent parameters of interest with Galerkin’s weighted residual finite element method. The most favorable case for cooling was obtained with TEG-cooling channel at φ = 5% and Re = 250. In this case, PV electrical power increased by about 8.1% and 49.2% compared to the PV/TEG and PV system without cooling, respectively. The TEG output power almost doubled when compared to the PV/TEG system for all channel models at Re = 250. The inlet temperature of the nanofluid has a profound impact on the overall efficiency and power increment of the PV module. The use of the PV/TEG-cooling channel with the lowest fluid inlet temperature (288.15 K) and nanofluid at the highest particle loading (φ = 5%) resulted in a PV efficiency increment of about 52% and 10% compared to the conventional PV system without cooling and the PV/TEG system. In this case, the TEG efficiency rises by about 51% in the PV/TEG nanofluid model compared to the PV/TEG model.

Keywords

Environmental sciences, power law, photovoltaic cooling; photovoltaic/thermoelectric generator; nanofluid; power law; thermal management, Environmental effects of industries and plants, photovoltaic/thermoelectric generator, photovoltaic cooling, TJ807-830, nanofluid, thermal management, GE1-350, TD194-195, Renewable energy sources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold
Related to Research communities
Energy Research